

补充信息

翻译

XPT 200 DN

带 DeviceNet 接口的 DigiLine 真空计

亲爱的顾客:

感谢您选择普发真空产品。您的新量规旨在支持您的个性化应用,为您提供最佳的无故障性能。 普发真空品牌代表了高品质的真空技术,丰富且全面的顶级产品和一流的服务。我们从这种广 泛的实践经验中获得了大量信息,这有助于实现高效部署以及您的个人安全。

由于知道我们的产品必须避免消耗输出量,我们相信我们的产品可以为您提供一个解决方案,帮助您有效并无故障地实施您的独特应用。

首次投入使用前,请阅读这些操作说明。如果您有任何问题或建议,请随时联系我们,网址: info@pfeiffer-vacuum.de。

有关普发真空的更多操作说明,可参见本公司网站中的下载中心。

免责声明

这些操作说明介绍了所有型号的产品。请注意,您的产品可能未配备本文件所述的所有功能。 普发真空会不断将产品更新到最新技术水平,恕不另行通知。请注意,在线操作说明可能与产 品随附的硬拷贝操作说明有所不同。

此外,对因未正确使用产品或明确定义为可预见的误用而造成的损坏,普发真空不承担任何责任或义务。

版权

本文档属于普发真空的知识产权,本文档的所有内容均受版权保护。未经普发真空事先书面许可,不得拷贝、更改、复制或出版本文档的任何内容。

我们保留更改本文档中技术数据和信息的权利。

目录

1	关于:	本手册	6
	1.1	有效性	6
		1.1.1 适用文件	6
		1.1.2 类型	6
	1.2	惯例	6
	1.3	1.2.1 缩写 商标证明	6 7
2	产品:	介绍	8
	2.1	功能	8
	2.2	连接	9
		2.2.1 "DeviceNet"接口	9
		2.2.2 带继电器触点的"继电器"连接	10
3	安装		11
	3.1 3.2	建立电气连接 配置 "DeviceNet" 连接	11 12
	3.2	記憶 DeviceNet 圧接 3.2.1 配置设备地址	12
		3.2.2 设置波特率	12
		3.2.3 配置	13
	3.3	配置实际压力值	13
	3.4	配置开关点和迟滞	14
4	接口		15
	4.1	DeviceNet 一致性声明	15
	4.2	DeviceNet 说明	15
		4.2.1 DeviceNet 对象"身份" 4.2.2 DeviceNet 对象"消息路由器"	16 17
		4.2.3 DeviceNet 对象 "DeviceNet"	17
		4.2.4 DeviceNet 对象 "程序集"	18
		4.2.5 DeviceNet 对象 "连接"	18
		4.2.6 DeviceNet 对象"S 模拟监视器"	19
		4.2.7 DeviceNet 对象 "S 模拟传感器"	20
		4.2.8 DeviceNet 对象"跳闸点"	22
5	操作		23
	5.1	通过 LED 显示运行模式	23
6	技术	参数	25
	UL/C	SA 认证	26
	₽ <i>la</i> ++ /	体符合性声明	27
	欧大1	体付っ性产 明	2,

表目录

表格 1:	适用文件	6
表格 2:	使用的缩写	7
表格 3:	真空计接口说明	9
表格 4:	"DeviceNet"接口分配	10
表格 5:	一般设备数据	15
表格 6:	DeviceNet 物理一致性数据	15
表格 7:	DeviceNet 通信数据	15
表格 8:	DeviceNet 对象	16
表格 9:	DeviceNet 数据类型	16
表格 10:	DeviceNet 服务	16
表格 11:	DeviceNet 对象 "身份"	17
表格 12:	实例服务	17
表格 13:	DeviceNet 对象 "DeviceNet"	17
表格 14:	实例服务	17
表格 15:	DeviceNet 对象 "程序集"	18
表格 16:	实例服务	18
表格 17:	DeviceNet 对象 "连接"	19
表格 18:	实例服务	19
表格 19:	DeviceNet 对象"S 模拟监视器"	20
表格 20:	实例服务	20
表格 21:	DeviceNet 对象 "S 模拟传感器"	21
表格 22:	实例 1 服务	21
表格 23:	实例 2 服务	22
表格 24:	DeviceNet 对象"跳闸点"	22
表格 25:	实例服务	22
表格 26:	DeviceNet-LED NET 和 MOD 的显示和含义	24
表格 27:	带 xPT 真空计的 DeviceNet 接口的技术参数	25

插图目录

图片 1:	标准版 xPT 真空计的结构	8
图片 2:	带继电器的 xPT 真空计的结构	9
图片 3:	继电器触点的"继电器"接口分配	10
图片 4:	连接到 DeviceNet 和电源	11
图片 5:	DeviceNet 设备地址的选择开关	12
图片 6:	DeviceNet 波特率的选择开关	12
图片 7:	开关点和迟滞	14

1 关于本手册

重要提示

使用前务必仔细阅读。

务请保存手册以备将来查阅。

1.1 有效性

本补充资料描述了与标准产品的重大偏差,而且仅在与有效的操作手册结合使用时方才有效。

1.1.1 适用文件

名称说明	文件
"数字式压电阻式真空计"CPT 200 操作手册	PG 0021
"数字式皮拉尼真空计"PPT 200 操作手册	PG 0022
"数字式压电/皮拉尼真空计"RPT 200 操作手册	PG 0023
"数字式皮拉尼/贝阿德-阿尔珀特真空计"HPT 200 操作手册	PG 0024
"数字式皮拉尼/冷阴极真空计"MPT 200 操作手册	PG 0025
一致性声明	上述操作指南中的一部分

表格 1: 适用文件

您可以在普发真空下载中心找到这些文件。

1.1.2 类型

本文件适用于以下产品:

- 带 DeviceNet 和 RS-485 接口的 DigiLine 真空计
- 带 DeviceNet 接口和带 2 个切换继电器的 RS-485 接口的 DigiLine 真空计

零件编号可在产品铭牌上找到。

普发真空保留在未事先通知的情况下进行技术变更的权利。

已相应指示仅与其中一种设备有关的信息。

本文件中的图形未按比例绘制。

这些图显示了具有 DN 16 ISO-KF 真空连接的产品, 然而, 在适用情况下, 它们也适用于其他真空连接。除非另有说明, 否则尺寸均以毫米 (mm) 为单位。

1.2 惯例

1.2.1 缩写

缩写	在本文件中的含义
ATM	大气压
CAN_H	控制器区域网络(高)
CAN_L	控制器区域网络(低)
DINT	DeviceNet 数据类型(有符号的双整数)
DN	DeviceNet 版本
EDS	DeviceNet 通讯参数(电子数据表)
HV	高真空
ID	识别
INT	DeviceNet 数据类型(整数值)
LED	发光二极管
LSD	DeviceNet 设备地址的选择器开关(最低有效数字)

缩写	在本文件中的含义
MSD	DeviceNet 设备地址的选择器开关(最高有效数字)
PELV	保护性特低电压
RS-485	采用异步串行数据传输的物理接口标准(推荐标准)
SINT	DeviceNet 数据类型(有符号的短整数)
TP	跳闸点
UDINT	DeviceNet 数据类型(无符号的双整数值)
UINT	DeviceNet 数据类型(无符号的整数值)
USINT	DeviceNet 数据类型(无符号的短整数值)

表格 2: 使用的缩写

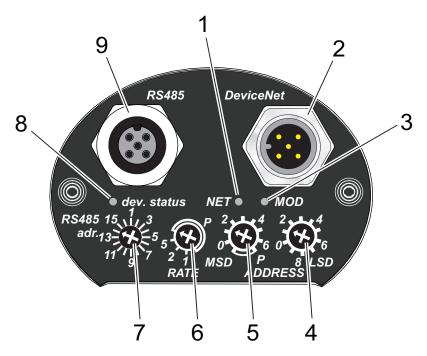
1.3 商标证明

● DeviceNet® 是 Open DeviceNet Vendor Association Inc. 的商标。

产品介绍 2

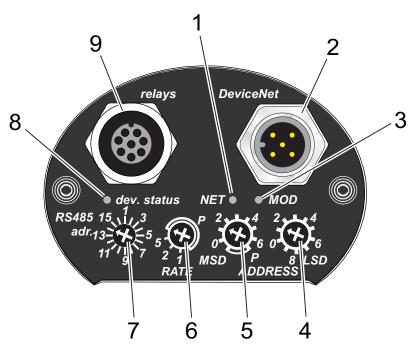
功能 2.1

真空计具有连接到 DeviceNet 系统的接口。


串行接口"RS-485"

有关"RS-485"连接的信息,可查看标准版量规的相应操作手册。

基于气体类型的量规修正系数


您可以通过串行接口将修正系数写入量规的存储器中。有关信息请参看量规(标准版)的相应 操作手册。

图片 1: 标准版 xPT 真空计的结构

- 1 DeviceNet 状态 LED 2 "DeviceNet" 接口 3 接口状态指示灯 4 DN 地址选择开关 (LSD) 5 DN 地址选择开关 (MSD)
- 波特率 DN 选择开关
- RS-485 地址选择开关 用于量规的状态 LED
- 8
- 连接"RS-485", 5 针

8/30

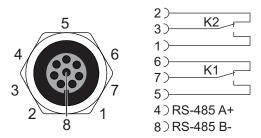
图片 2: 带继电器的 xPT 真空计的结构

- DeviceNet 状态 LED
- "DeviceNet" 接口
- 3 接口状态指示灯
- DN 地址选择开关 (LSD)
- 5 DN 地址选择开关 (MSD)
- 波特率 DN 选择开关
- RS-485 地址选择开关 用于量规的状态 LED
- 8
- "继电器"接口, 8 针, 带干触点

2.2 连接

连接 描述 **DeviceNet** M12 插头, A 编码, 带螺纹接头, 用于连接 DeviceNet 总线系统。 RS-485(标准版) 带螺纹接头的 M12 衬套,用于连接普发真空控制单元或 PC。使用一个 Y 型三通插头,允许将两条线路集成到一个总线系统中。 继电器(带继电器触点的型号) M12 衬套, A 编码, 带螺纹接头。提供两个切换继电器, 用于连接普发真空控制单元或 PC.

真空计接口说明 表格 3:


2.2.1 "DeviceNet" 接口

可使用标有"DeviceNet"的接口将真空计连接到 DeviceNet 总线系统。也可以通过此接口提供电压。在带继 电器触点的型号上, 仅通过此接口提供电压。

	引脚	分配
5	1	排空
	2	相对于 V- 的 V +, 24 V DC
2 1	3	V-
	4	CAN_H
3 4	5	CAN_L

表格 4: "DeviceNet"接口分配

2.2.2 带继电器触点的"继电器"连接

图片 3: 继电器触点的"继电器"接口分配

K1 K1 继电器 K2 K2 继电器

3 安装

⚠ 危险

接触电压存在致命危险

根据 IEC 61010, 超过 30 V (AC) 或 60 V (DC) 的电压为危险电压。如果接触到危险的接触电压,可能会因电击造成人身伤害甚至死亡。

▶ 仅应用受保护的超低电压 (PELV)。

注意

通电时连接导致的损坏

如果您在通电的情况下连接量规,则会损坏量规。

- ▶ 安装量规前, 断开电源电压连接。
- ▶ 只有在零电位状态下才接上连接电缆。

注意

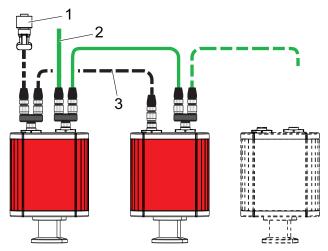
两个接口同时操作导致的数据传输错误

如果试图同时通过 RS-485 和 DeviceNet 接口操作真空计,则将导致数据不正确和数据传输干扰。

- ▶ 仅通过两个接口中的一个接口来操作压力表。
- ▶ 在 DeviceNet 操作中仅使用 RS-485 连接器为真空计供电。

真空装置的连接

您可以在标准版量规的相应操作手册中找到有关真空连接的信息。


确保仪表的防护等级

▶ 设置好地址和波特率后, 将橡皮塞放回地址选择器开关上, 以建立指定的保护等级。

3.1 建立电气连接

电源

- 标准版:可选择"RS-485"接口或"DeviceNet"接口
- 带干触点和开关点的型号: 仅通过"DeviceNet"接口

图片 4: 连接到 DeviceNet 和电源

- 1 电压源 24 V DC, 可选
- 2 连接到 DeviceNet 控制器和 24 V DC

3 通过 RS-485 接口供电, 可选

通过"RS-485"接口(可选)连接电源

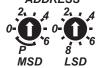
- ▶ 使用 <u>DigiLine 附件产品系列</u>的连接电缆。
- ▶ 按照量规的标准说明连接电源电压。

连接 DeviceNet

- ▶ 根据适用的指南建立 DeviceNet 连接。
- ▶ 为 DeviceNet 连接提供电压。
- ▶ 将橡胶塞直接安装在地址选择开关上并使之尽可能深, 以达到规定的保护等级。
- ▶ 配置 DeviceNet 连接。

3.2 配置 "DeviceNet" 连接

操作程序


- 1. 设置有效且唯一的设备地址。
- 2. 设置波特率。
- 3. 使用 EDS 文件配置数据交换。
 - 可在普发真空下载中心下载 EDS 文件。

3.2.1 配置设备地址

您可以使用标有 "ADDRESS" 的选择器开关或通过 DeviceNet 手动配置 DeviceNet 设备地址。

- 十进制
- 00 63

ADDRESS

图片 5: DeviceNet 设备地址的选择开关

Zehnerstellen (MSD) 0X 至 6x

Einerstellen (LSD) x0 至 x9

手动设置设备地址

▶ 用选择开关设置为所需的值。

设置完成后, 设备将使用新的设备地址访问总线。

通过 DeviceNet 设置设备地址

- 1. 关停设备或切断其电源连接。
- 2. 将选择器开关 MSD 设置到位置 "P"。
 - 启动后,设备会使用最后一个有效的设备地址(交付时:63)。
- 3. 通过 DeviceNet 对象 3.1.1 进行设备地址编程。

3.2.2 设置波特率

您可以使用标有"RATE"的选择开关或通过 DeviceNet 手动设置波特率。

RATE

图片 6: DeviceNet 波特率的选择开关

1 125 kBit/s 5 500 kBit/s

2 250 kBit/s P 通过 DeviceNet 的波特率

手动设置波特率

▶ 用选择开关设置为所需的值。

该更改会在下次系统启动时生效。

通过 DeviceNet 设置波特率

- 1. 关停设备或切断其电源连接。
- 2. 将选择开关设置到位置 "P"。
 - 打开后,设备会使用最后一个有效的波特率(交付时:500 kBit/s)。
- 3. 通过 DeviceNet 对象 3.1.2 编程波特率。

3.2.3 配置

根据用于设置 DeviceNet 通信的程序, 您可以执行不同的步骤:

- EDS 文件
 - 导入 EDS 文件
- 设备特有的数据
 - 真空计的配置
- 控制器特有的数据
 - 在控制器扫描列表中设置设备
 - 定义循环输入/输出数据的格式

导入 EDS 文件

- ▶ 导入 EDS 文件。
 - 可在<u>普发真空下载中心</u>下载 EDS 文件。

配置真空计

▶ 如需调整与交付状态不同的配置, 请使用 EDS 文件调整单个 DeviceNet。

执行特定于控制器的安装

- 1. 在控制器的扫描列表中设置设备。
- 2. 定义循环输入/输出数据的格式。

显式数据交换(显式连接)

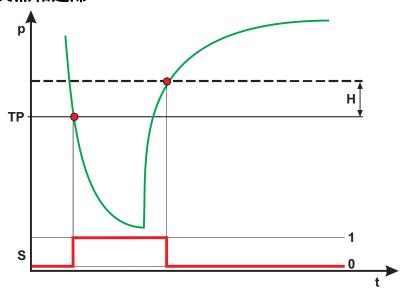
通过此连接可访问各种 DeviceNet 对象。一般来说, 这是使用专用配置程序和 EDS 文件完成的。EDS 文件还用于定义在循环数据交换期间所发送的数据。

循环数据交换(轮询 I/O 连接)

针对循环数据交换, 多个 DeviceNet 对象组合在一起形成"程序集(4.x.3.)"。为每个方向选择一个程序集(输入/输出数据)。

3.3 配置实际压力值

只有在没有活动的轮询 I/O 连接时, 才能调整数据类型和物理单位。


设置实际压力值的数据类型

- ▶ 根据配置工具, 如有必要, 为实际压力值的相应数据类型使用自定义的 EDS 文件。
 - 将 INT 数据类型(2 个字节, 整数)用于 0 到 65535(默认)之间, EDS 文件"默认(INT 压力值) *.eds" 的值。
 - 使用 REAL 数据类型(4 字节, 浮点)作为 EDS 文件"REAL pressure value*REAL.eds"的浮点值。
- ▶ 通过配置工具或通过显式连接到"S 模拟传感器"/实例 1/数据单元 (49.1.3), 设置数据类型:INT(默认):C3h, REAL:CAh。
 - 数据类型的值会影响 I/O 数据。

设置实际压力值的物理单位

- ▶ 通过配置工具或通过显式连接到"S 模拟传感器"/实例 1/数据单元 (49.1.4), 设置单位。
 - 计数(=mbar, 默认值):1001h
 - Psi: 1300hTorr: 1301hmTorr: 1302hmbar: 1308h

配置开关点和迟滞 3.4

图片 7: 开关点和迟滞

H 迟滞

TP 跳闸点(开关点) p 压力 S 状态

开关条件

- 输入阀≤开关阈值->状态=1=继电器激活。
- 输入波≥开关阈值+迟滞->状态=0=继电器停用。
- "跳闸点"/实例 1/状态 -> 继电器 K1 "跳闸点"/实例 2/状态 -> 继电器 K2

设置开关点

- ▶ 通过显式连接设置开关点。
 - "跳闸点"/实例 1 或实例 2/属性 5
 - 启动后预设(默认):0

设置滞后

- ▶ 通过显式连接设置滞后。
 - "跳闸点"/实例 1 或实例 2/属性 10
 - 启动后预设(默认):0

使用开关点和滞后值设置数据类型和数据单位

- ▶ 设置开关点和迟滞值的数据类型和数据单位,按照
 - "S 模拟传感器"/实例 1/数据类型 (49.1.3)
 - "S 模拟传感器"/实例 1/数据单元 (49.1.4)

4 接口

4.1 DeviceNet 一致性声明

一般设备数据	
符合 DeviceNet 规格	第一卷, 2.0 版
	第二卷, 2.0 版
供应商名称	普发真空
设备配置文件名称	真空/压力计设备
产品目录号	-
产品修订	1.1

表格 5: 一般设备数据

DeviceNet 物理一致性数据		
网络功耗(最大)	0.1 A + 连接真空计的功耗 @ 11 V DC(最坏情况)	
连接器样式	密封微型	
隔离物理层	否	
支持 LED	模块、网络	
MAC ID 设置	BCD 开关, 网络可选	
默认 MAC ID	63	
通信速率设置	BCD 开关, 网络可选	
支持的通信速率	125 k, 250 k, 500 k	

表格 6: DeviceNet 物理一致性数据

DeviceNet 通信数据	
预定义的控制器/设备连接设置	仅第2组服务器
已实现碎片化的显式消息传递	是
	1000 ms
典型的目标地址类,实例,属性	1, 1, 7

表格 7: DeviceNet 通信数据

4.2 DeviceNet 说明

根据配置文件"真空/压力表设备",可以通过以下 DeviceNet 对象访问真空计的功能。

类	实例	注解	
1: 身份	1	设备特性	
2: 消息路由器	1	-	
3: DeviceNet	1	通讯设置	
4: 装配	2	输入	1 个状态字节 + 实际压力值 INT(2 字节, 整数 0 – 65535)
	5	输入	1 个状态字节 + 实际压力值 REAL(4 字节, 浮点数)
5: 连接	1	显式(单独访问功能)	
	2	轮询 I/O	通常是程序集对象的交换)
48: S 设备监视器	1	设备和状	态信息
49: S 模拟传感器	1	压力实际	值, 传感器 1
		CPT 200	、RPT 200、PPT 200、HPT 200(皮拉尼)、MPT 200(皮拉尼)
	2	压力实际	值, 传感器 2
		HPT 200	(贝阿德-阿尔珀特传感器)、MPT 200(冷阴极传感器)

类	实例	注解
53: 跳闸点	1	开关点, 继电器 K1
	2	开关点, 继电器 K2

表格 8: DeviceNet 对象

数据类型	数据长度	描述	举例
BOOL	1位	二进制值 (0/1)	00h: 0, 01h:1
字节	8 位	8 个单独的位	00h, FFh
DINT	4 字节	整数与符号	12345678h: 89h, 56h, 34h, 12h
ENGUNITS	2 字节	物理单位	mbar (0x1001)
EPATH	可变	路径段	-
INT	2 字节	整数与符号	1234h: 34h, 12h
打包的 EPATH	6 字节	-	1.2.3: 20h, 01h, 24h, 02h, 30h, 03h
SHORT_STRING	-	字符串与前面的长度字节	"Bilbo": 05h, 42h, 69h, 6Ch, 62h, 6Fh
SINT	1 字节	整数与符号	-42: D6h
UINT	2 字节	无符号的整数	2468h: 68h, 24h
UDINT	4 字节	无符号的整数	10203040h: 40h, 30h, 20h, 10h
USINT	1 字节	无符号的整数	101: 65h
WORD	2 字节	16 个单独的位	55AAh: AAh, 55h

表格 9: DeviceNet 数据类型

服务	DeviceNet 服务名称	服务编号
gaa	获取_特征_全部	1 (01h)
res	重置	5 (05h)
sta	开始	6 (06h)
sto	停止	7 (07h)
获取	获取_特征_单个	14 (0Eh)
set	设定_特征_单个	16 (10h)
abo	中断	75 (4Bh)
all	分配_控制器/设备_连接_设置	
za	零_调整	
rec	恢复	76 (4Ch)
rel	释放_控制器/设备_连接_设置	
ga	增益_调整	
per	执行_诊断	78 (4Eh)
sds	设置_脱气_状态	97 (61h)
ses	设置_排放_状态	98 (62h)
ceoa	清除_排放_关闭_警报	99 (63h)

表格 10: DeviceNet 服务

4.2.1 DeviceNet 对象"身份"

路径	名称	数据类型	服务	注解
1.0.1	大修	UINT	获取	
1.0.2	最大实例			
1.0.3	实例数			
实例 1				
1.1.0	(实例)	-	get, set, res, gaa	

路径	名称	数据类型	服务	注解
1.1.1	供应商 ID	UINT	获取	527(普发真空)
1.1.2	设备类型			28(压力计装置)
1.1.3	产品代码			6401 (CPT 200 DN)
				6145 (PPT 200 DN)
				6657 (RPT 200 DN)
				6913 (HPT 200 DN)
				7169 (MPT 200 DN)
1.1.4	大修	结构		
	主要修订	USINT		
	次要修订			
1.1.5	状态	WORD		
1.1.6	编号	UDINT		
1.1.7	产品名称	SHORT_STRING		xPT 200 DN
2010-01-01	心跳间隔	USINT	获取,设定	

表格 11: DeviceNet 对象"身份"

服务编号	名称	注解
1 (01h)	获取_特征_全部	
5 (05h)	重置	
14 (0Eh)	获取_特征_单个	
16 (10h)	设定_特征_单个	

表格 12: 实例服务

4.2.2 DeviceNet 对象"消息路由器"

此对象不提供任何属性和服务。

4.2.3 DeviceNet 对象 "DeviceNet"

路径	名称	数据类型	服务	注解
3.0.1	大修	UINT	获取	
实例 1				
3.1.0	(实例)	-	获取,设定,全部,相对	
3.1.1	MAC ID	USINT	获取, (设定)	仅在开关位置 "P" 处设定
3.1.2	波特率			
3.1.5	分配信息	结构	获取	
	分配选择字节	字节		
	控制器的 MAC ID	USINT		

表格 13: DeviceNet 对象 "DeviceNet"

服务编号	名称	注解
14 (0Eh)	获取_特征_单个	
16 (10h)	设定_特征_单个	
75 (4Bh)	分配_控制器/设备_连接_设置	
76 (4Ch)	释放_控制器/设备_连接_设置	

表格 14: 实例服务

4.2.4 DeviceNet 对象 "程序集"

路径	名称	数据类型	服务	注解
4.0.1	大修	UINT	获取	
4.0.2	最大实例			
4.0.3	实例数			
实例 2(默i	认输入):INT 压力值	•	·	
4.2.0	(实例)		获取	
4.2.3	数据	阵列	获取	
	异常状态	字节		S设备监视器
	传感器值	INT		S-模拟传感器值(2 字节)
实例 5(输,	入): REAL 压力值	•		
4.5.0	(实例)		获取	
4.5.3	数据	阵列	获取	
	异常状态	字节		S设备监视器
	传感器值	REAL		S 模拟传感器值(4 字节)

表格 15: DeviceNet 对象 "程序集"

服务编号	名称	注解
14 (0Eh)	获取_特征_单个	

表格 16: 实例服务

4.2.5 DeviceNet 对象 "连接"

路径	名称	数据类型	服务	注解		
5.0.1	大修	UINT	获取			
实例 1:显式连接						
5.1.0	(实例)		获取,设定			
5.1.1	状态	USINT	获取			
5.1.2	实例类型					
5.1.3	传输类触发器	字节				
5.1.4	DeviceNet 生成的连接 ID	UINT				
5.1.5	DeviceNet 消耗的连接 ID					
5.1.6	DeviceNet 初始通信特性	字节				
5.1.7	生成的连接尺寸	UINT				
5.1.8	消耗的连接尺寸					
5.1.9	预期包裹率		获取,设定			
5.1.12	监视器超时操作					
5.1.13	生成的连接路径长度	USINT	获取			
5.1.14	生成的连接路径	UINT				
5.1.15	消耗的连接路径长度	打包的 EPATH				
5.1.16	消耗的连接路径	UINT				
5.1.17	生产抑制时间	打包的 EPATH				
实例 2:	实例 2:轮询 I/O 连接					
5.2.0	(实例)		获取,设定			

路径	名称	数据类型	服务	注解
5.2.1	状态	USINT	获取	
5.2.2	实例类型			
5.2.3	传输类触发器	字节		
5.2.4	DeviceNet 生成的连接 ID	UINT		
5.2.5	DeviceNet 消耗的连接 ID			
5.2.6	DeviceNet 初始通信特性	字节		
5.2.7	生成的连接尺寸	UINT		
5.2.8	消耗的连接尺寸			
5.2.9	预期包裹率		获取, 设定	
5.2.12	监视器超时操作			
5.2.13	生成的连接路径长度	USINT	获取	
5.2.14	生成的连接路径	UINT		默认:4.2.3
				更改程序集实例以在"s 模拟传感器对象"中选择适当的文件类型。
5.2.15	消耗的连接路径长度	打包的 EPATH		
5.2.16	消耗的连接路径	UINT		
5.2.17	生产抑制时间	打包的 EPATH		

表格 17: DeviceNet 对象 "连接"

服务编号	名称	注解
14 (0Eh)	获取_特征_单个	
16 (10h)	设定_特征_单个	

表格 18: 实例服务

4.2.6 DeviceNet 对象"S 模拟监视器"

路径	名称	数据类型	服务	注解
48.0.1	大修	UINT	获取	
48.0.2	最大实例			
48.0.3	实例数			
实例 1				
48.1.0	(实例)		res, sta, sto, get, set, abo, rec, per	
48.1.3	设备类型	SHORT_STRING	获取	
48.1.4	SEMI 标准修订版本		获取	
48.1.5	制造商的名称		获取	
48.1.6	制造商的型号		获取	
48.1.7	软件修订版本		获取	
48.1.8	硬件修订版本		获取	
48.1.11	设备状态	USINT	获取	1: 自测 2: 空闲 3: 自测异常 4: 执行 5: 中断 6: 严重故障
48.1.12	异常状态	字节	获取	

路径	名称	数据类型	服务	注解
48.1.13	异常详细警报	结构	获取	
	常见异常细节大小	USINT	获取	2
	常见异常细节 0	字节	获取	
	常见异常细节 1		获取	
	设备异常细节	USINT	获取	2
	设备异常 0	字节	获取	
	设备异常 1		获取	
	制造商异常细节大小	USINT	获取	2
	制造商异常细节 0	字节	获取	
	制造商异常细节 1		获取	
48.1.14	异常细节警告	结构	获取	
	常见异常细节大小	USINT	获取	2
	常见异常细节 0	字节	获取	
	常见异常细节 1		获取	
	设备异常细节	USINT	获取	2
	设备异常 0	字节	获取	
	设备异常 1		获取	
	制造商异常细节大小	USINT	获取	2
	制造商异常细节 0	字节	获取	
	制造商异常细节 1		获取	
48.1.15	警报启用	BOOL	获取,设定	
48.1.16	警告启用			

表格 19: DeviceNet 对象"S 模拟监视器"

服务编号	名称	注解
5 (05h)	重置	
6 (06h)	开始	设备状态>"正在执行"
7 (07h)	停止	设备状态> "空闲"
14 (0Eh)	获取_特征_单个	
16 (10h)	设定_特征_单个	
75 (4Bh)	中断	设备状态> "中止"
76 (4Ch)	恢复	设备状态> "空闲"
78 (4Eh)	执行_诊断	0 = 标准

表格 20: 实例服务

4.2.7 DeviceNet 对象 "S 模拟传感器"

路径	名称	数据类型	服务	注解
49.0.1	大修	UINT	获取	
49.0.2	最大实例			
49.0.3	实例数			
实例 1:CPT 200(仅压电)、RPT 200(皮拉尼)、PPT 200(皮拉				已)、HPT 200(皮拉尼)、MPT 200(皮拉尼)
49.1.0	(实例)		get, set, za, ga	
49.1.3	数据类型	USINT	获取. (设定)	 INT (0xC3) 或 REAL (0xCA) 也为轮询 I/O 连接选择适当的程序集实例 存在轮询 I/O 连接时不可配置 更改也会影响实例 2(如果存在)。 当在轮询 I/O 连接中已设置程序集对象时, 更改为适当的数据类型

路径	名称	数据类型	服务	注解
49.1.4	数据单位	ENGUNITS	获取, (设定)	 计数(= mbar, 0x1001)、Psi (0x1300)、Torr (0x1301)、mTorr (0x1302)、mbar (0x1308)、Pa (0x1309) 存在轮询 I/O 连接时不可配置 更改也会影响实例 2(如果存在)。
49.1.5	读数有效	BOOL	获取	0:无效, 1:有效
49.1.6	值	INT		压力值
49.1.7	状态	字节		
49.1.14	增益	REAL	获取,设定	不是 CPT 200
49.1.94	传感器警告	结构	获取	
49.1.95	传感器报警			
49.1.96	状态扩展	字节		
49.1.99	子类	UINT		
实例 2:F	IPT 200(贝阿	德-阿尔珀特传	感器)、MPT 200(冷阴极	传感器)
49.2.0	(实例)		获取、设定、za、ga、 sds、ses、ceoa	
49.2.3	数据类型	USINT	获取,(设定)	 INT (0xC3) 或 REAL (0xCA) 也为轮询 I/O 连接选择适当的程序集实例 存在轮询 I/O 连接时不可配置 更改也会影响实例 1(如果存在)。 当在轮询 I/O 连接中已设置程序集对象时, 更改为适当的数据类型
49.2.4	数据单位	ENGUNITS	获取, (设定)	 计数(= mbar, 0x1001)、Psi (0x1300)、Torr (0x1301)、mTorr (0x1302)、mbar (0x1308)、Pa (0x1309) 存在轮询 I/O 连接时不可配置 更改也会影响实例 1(如果存在)。
49.2.5	读数有效	BOOL	获取	0:无效, 1:有效
49.2.6	值	INT		压力值
49.2.7	状态	字节		
49.2.14	增益	REAL	获取,设定	
49.2.88	脱气状态	BOOL	获取	
49.2.93	排放状况			
49.2.94	传感器警告	结构		
49.2.95	传感器报警			
49.2.96	状态扩展	字节		
49.2.99	子类	UINT		

表格 21: DeviceNet 对象 "S 模拟传感器"

服务编号	名称	注解
14 (0Eh)	获取_特征_单个	
16 (10h)	设定_特征_单个	
75 (4Bh)	零_调整	
76 (4Ch)	增益_调整	

表格 22: 实例 1 服务

服务编号	名称	注解
14 (0Eh)	获取_特征_单个	
16 (10h)	设定_特征_单个	
75 (4Bh)	零_调整	
76 (4Ch)	增益_调整	数据:所选数据格式的当前压力
97 (61h)	设置_脱气_状态	数据 (BOOL):0 - 关闭, 1 - 打开

服务编号	名称	注解
98 (62h)	设置_排放_状态	由真空计自动控制
99 (63h)	清除_排放_关闭_警报	不支持相关操作

表格 23: 实例 2 服务

4.2.8 DeviceNet 对象"跳闸点"

路径	名称	数据类型	服务	注解
53.0.1	大修	UINT	获取	
53.0.2	最大实例			
53.0.3	实例数			
实例 1:K	1 继电器		-	
53.1.0	(实例)		获取,设定	
53.1.5	跳闸点	INT(默认)或数据类型属性	获取,设定	默认 = 0
53.1.6	跳闸点启用	BOOL		默认 = 启用
53.1.7	状态		获取	0 = 开关点未确认
				1 = 开关点已确认
53.1.10	迟滞	与跳闸点数据类型相同	获取,设定	默认 = 0
53.1.12	目的地	EPATH	获取, (设定 ¹⁾)	目标属性路径, 其值由输出决定(默认 =000)
53.1.13	输出	BOOL	获取	输出 = 状态
53.1.14	源	EPATH	获取, (设定 ²⁾)	为输入调用其值的源属性的路径
53.1.15	输入	INT(默认)或数据类型属性	获取, (设定)	'获取'调出当前压力值。
				"设置"无效。
实例 2:K	2 继电器			
53.2.0	(实例)		获取,设定	
53.2.5	跳闸点	INT(默认)或数据类型属性	获取,设定	默认 = 0
53.2.6	跳闸点启用	BOOL		默认 = 启用
53.2.7	状态		获取	0 = 开关点未确认
				1 = 开关点已确认
53.2.10	迟滞	与跳闸点数据类型相同	获取,设定	默认 = 0
53.2.12	目的地	EPATH	获取, (设定 ³⁾)	目标属性路径, 其值由输出决定(默认 =000)
53.2.13	输出	BOOL	获取	输出 = 状态
53.2.14	源	EPATH	获取, (设定 ⁴⁾)	为输入调用其值的源属性的路径
53.2.15	输入	INT(默认)或数据类型属性	获取, (设定)	'获取'调出当前压力值。
				"设置"无效。

表格 24: DeviceNet 对象"跳闸点"

服务编号	名称	注解
14 (0Eh)	获取_特征_单个	
16 (10h)	设定_特征_单个	

表格 25: 实例服务

¹⁾ 设定目标没有效果, 因为输出 = 状态。

²⁾ 设置源没有效果, 因为它是内部的。连接 5.2.14 产生的连接路径

³⁾ 设定目标没有效果, 因为输出 = 状态。

⁴⁾ 设置源没有效果, 因为它是内部的。连接 5.2.14 产生的连接路径

5 操作

注意

两个接口同时操作导致的数据传输错误

如果试图同时通过 RS-485 和 DeviceNet 接口操作真空计,则将导致数据不正确和数据传输干扰。

- ▶ 仅通过两个接口中的一个接口来操作压力表。
- ▶ 在 DeviceNet 操作中仅使用 RS-485 连接器为真空计供电。

校准的前提条件

有关使用 RS-485 接口进行校准的信息以及校准的前提条件, 请参看真空计(标准版)操作手册。

所用真空计的程序和适用值

遵守所用真空计的程序和适用值。相关信息请参看量规(标准版)的操作手册。

必要条件

- 有效且唯一的设备地址设置
- 实际压力值集的数据类型和物理单位
- 波特率设置

建立连接

- 1. 将"Allocate_Controller/Device_Connection_Set"服务应用于 DeviceNet 对象的实例。
- 2. 输入所需的连接(显式/轮询 I/O)并为相应连接设置"预期数据包速率"属性。

读取实际压力值

▶ 通过"显式连接"读取属性值"S 模拟传感器"/实例 1/值 (49.1.6)。

和/或

- ▶ 通过轮询 I/O 连接读取输入数据。
 - 根据数据类型, 输入数据包含 3 个字节(1 个状态字节 + INT 实际压力值)或 5 个字节(1 个状态字节 + REAL 实际压力值)。

执行零点校准

▶ 通过显式连接, 将"归零_调整"服务应用于"S 模拟传感器"对象的相关实例。

ATM 校准

▶ 通过显式连接, 使用当前大气压力作为数据, 将"增益_调整"服务应用于"S 模拟传感器"对象的相关实例。

对 HPT 200 进行脱气

▶ 通过显式连接, 将"设置_脱气_状态"服务应用于数据为 0(关闭)或 1(打开)的"S 模拟传感器值"对象的实例 2.

在 PPT 200、RPT 20x、HPT 200 和 MPT 200 处设置修正系数

▶ 通过显式连接,写入"S模拟传感器"对象相关实例的增益属性。

5.1 通过 LED 显示运行模式

LED 状态	NET	MOD	显示	含义	操作
关闭	Х			设备不在总线上	● 为设备提供电压。 ● 等待地址测试(约 2 秒)
绿灯闪烁	Χ			在总线上,未分配控制器	● 与控制器建立连接。
绿灯点亮	Χ			在总线上, 已分配控制器	-
红灯闪烁	Χ			与控制器的连接已过期	● 检查与控制器的连接。
红灯点亮	X			总线错误或分配了重复的设备地 址	◆ 检查总线。◆ 检查设备地址。◆ 检查波特率。
关闭		Х		无电源电压	● 为设备提供电压。

LED 状态	NET	MOD	显示	含义	操作
绿灯点亮		Х		设备准备就绪	-
红灯闪烁		X		设备错误	● 消除错误。

表格 26: DeviceNet-LED NET 和 MOD 的显示和含义

6 技术参数

参数	CPT 200 DN	PPT 200 DN	RPT 200 DN	HPT 200 DN	MPT 2	MPT 200 DN	
					标准	继电器触点	
接口	RS-485,DeviceNet						
"DeviceNet"接口, 设 备端	数字式 RS-485, M12 母头, 5 针 DeviceNet, M12 公头, 5 针					数字式 RS-485, M12 母头, 8 针, 干触点 DeviceNet, M12 公头, 5 针	
继电器触点	_					2 个继电器 30 V DC 时为 1 A 可通过 DeviceNet 配置开关阈 值	
电源:最大耗电量	2.1 W	3.1 W	3.1 W	9.6 W	3.6 W	4.5 W	

表格 27: 带 xPT 真空计的 DeviceNet 接口的技术参数

The products CPT 200 DN, PPT 200 DN, RPT 200 DN and MPT 200 DN

- conform to the UL standards

UL 61010-1, 3rd edition (2016), R:2019
Safety requirements for electrical equipment for measurement, control and laboratory use Part 1: General requirements

- are certified to the CSA standards

CSA C22.2 No. 61010-1-12, 3rd edition (2012), U1, U2, A1 Safety requirements for electrical equipment for measurement, control and laboratory use Part 1: General requirements

欧共体符合性声明

本符合性声明是由制造商全权负责发布的。 该类型产品声明:

带 DeviceNet 接口的 DigiLine 真空计

CPT 200 DN

PPT 200 DN

RPT 200 DN

HPT 200 DN

MPT 200 DN

特此声明, 所列产品符合下述**欧盟指令**的所有相关规定。

低压 2014/35/EC 电磁兼容指令 2014/30/EU 2011/65/EU 某些有害物质的使用限制 2015/863/EU 某些有害物质的使用限制, 委托指令

统一标准和适用的国家标准和规范:

DIN EN IEC 61326-1:2022 DIN EN IEC 63000:2019

签名

Pfeiffer Vacuum GmbH (普发真空有限公司) Berliner Straße 43 35614 Asslar

Germany

Asslar, 2023-03-16

(Daniel Sälzer) 总经理

英国符合性声明

本符合性声明是由制造商全权负责发布的。 该类型产品声明:

带 DeviceNet 接口的 DigiLine 真空计

CPT 200 DN

PPT 200 DN

RPT 200 DN

HPT 200 DN

MPT 200 DN

特此声明, 所列产品符合下述英国指令的所有相关规定。

电磁兼容条例 2016

电气和电子设备中限制使用某些危险物质条例 2012

適用標準及規格:

EN IEC 61326-1:2021 EN IEC 63000:2018

制造商在英国的授权代表和编撰技术文件的授权代理是 Pfeiffer Vacuum Ltd, 16 Plover Close, Interchange Park, MK169PS Newport Pagnell。

签名

Pfeiffer Vacuum GmbH (普发真空有限公司) Berliner Straße 43 35614 Asslar

Germany

Asslar, 2023-03-16

(Daniel Sälzer)

总经理

VACUUM SOLUTIONS FROM A SINGLE SOURCE

Pfeiffer Vacuum stands for innovative and custom vacuum solutions worldwide, technological perfection, competent advice and reliable service.

COMPLETE RANGE OF PRODUCTS

From a single component to complex systems:

We are the only supplier of vacuum technology that provides a complete product portfolio.

COMPETENCE IN THEORY AND PRACTICE

Benefit from our know-how and our portfolio of training opportunities! We support you with your plant layout and provide first-class on-site service worldwide.

Are you looking for a perfect vacuum solution? Please contact us

Pfeiffer Vacuum GmbH Headquarters • Germany T +49 6441 802-0 info@pfeiffer-vacuum.de

www.pfeiffer-vacuum.com

